Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 20(4): e1012135, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38593120

RESUMO

The rebound competent viral reservoir (RCVR)-virus that persists during antiretroviral treatment (ART) and can reignite systemic infection when treatment is stopped-is the primary barrier to eradicating HIV. We used time to initiation of ART during primary infection of rhesus macaques (RMs) after intravenous challenge with barcoded SIVmac239 as a means to elucidate the dynamics of RCVR establishment in groups of RMs by creating a multi-log range of pre-ART viral loads and then assessed viral time-to-rebound and reactivation rates resulting from the discontinuation of ART after one year. RMs started on ART on days 3, 4, 5, 6, 7, 9 or 12 post-infection showed a nearly 10-fold difference in pre-ART viral measurements for successive ART-initiation timepoints. Only 1 of 8 RMs initiating ART on days 3 and 4 rebounded after ART interruption despite measurable pre-ART plasma viremia. Rebounding plasma from the 1 rebounding RM contained only a single barcode lineage detected at day 50 post-ART. All RMs starting ART on days 5 and 6 rebounded between 14- and 50-days post-ART with 1-2 rebounding variants each. RMs starting ART on days 7, 9, and 12 had similar time-to-measurable plasma rebound kinetics despite multiple log differences in pre-ART plasma viral load (pVL), with all RMs rebounding between 7- and 16-days post-ART with 3-28 rebounding lineages. Calculated reactivation rates per pre-ART pVL were highest for RMs starting ART on days 5, 6, and 7 after which the rate of accumulation of the RCVR markedly decreased for RMs treated on days 9 and 12, consistent with multiphasic establishment and near saturation of the RCVR within 2 weeks post infection. Taken together, these data highlight the heterogeneity of the RCVR between RMs, the stochastic establishment of the very early RCVR, and the saturability of the RCVR prior to peak viral infection.


Assuntos
Infecções por HIV , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , Síndrome de Imunodeficiência Adquirida dos Símios/tratamento farmacológico , Vírus da Imunodeficiência Símia/fisiologia , Macaca mulatta , Replicação Viral , Antirretrovirais/uso terapêutico , Antirretrovirais/farmacologia , Infecções por HIV/tratamento farmacológico , Carga Viral
2.
PLoS Pathog ; 17(7): e1009278, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34228762

RESUMO

Simian immunodeficiency virus (SIV) challenge of rhesus macaques (RMs) vaccinated with strain 68-1 Rhesus Cytomegalovirus (RhCMV) vectors expressing SIV proteins (RhCMV/SIV) results in a binary outcome: stringent control and subsequent clearance of highly pathogenic SIV in ~55% of vaccinated RMs with no protection in the remaining 45%. Although previous work indicates that unconventionally restricted, SIV-specific, effector-memory (EM)-biased CD8+ T cell responses are necessary for efficacy, the magnitude of these responses does not predict efficacy, and the basis of protection vs. non-protection in 68-1 RhCMV/SIV vector-vaccinated RMs has not been elucidated. Here, we report that 68-1 RhCMV/SIV vector administration strikingly alters the whole blood transcriptome of vaccinated RMs, with the sustained induction of specific immune-related pathways, including immune cell, toll-like receptor (TLR), inflammasome/cell death, and interleukin-15 (IL-15) signaling, significantly correlating with subsequent vaccine efficacy. Treatment of a separate RM cohort with IL-15 confirmed the central involvement of this cytokine in the protection signature, linking the major innate and adaptive immune gene expression networks that correlate with RhCMV/SIV vaccine efficacy. This change-from-baseline IL-15 response signature was also demonstrated to significantly correlate with vaccine efficacy in an independent validation cohort of vaccinated and challenged RMs. The differential IL-15 gene set response to vaccination strongly correlated with the pre-vaccination activity of this pathway, with reduced baseline expression of IL-15 response genes significantly correlating with higher vaccine-induced induction of IL-15 signaling and subsequent vaccine protection, suggesting that a robust de novo vaccine-induced IL-15 signaling response is needed to program vaccine efficacy. Thus, the RhCMV/SIV vaccine imparts a coordinated and persistent induction of innate and adaptive immune pathways featuring IL-15, a known regulator of CD8+ T cell function, that support the ability of vaccine-elicited unconventionally restricted CD8+ T cells to mediate protection against SIV challenge.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Interleucina-15/imunologia , Vacinas contra a SAIDS/imunologia , Vírus da Imunodeficiência Símia/imunologia , Animais , Citomegalovirus , Feminino , Vetores Genéticos , Macaca mulatta , Masculino , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle
3.
J Clin Invest ; 131(6)2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33465055

RESUMO

The effectiveness of virus-specific strategies, including administered HIV-specific mAbs, to target cells that persistently harbor latent, rebound-competent HIV genomes during combination antiretroviral therapy (cART) has been limited by inefficient induction of viral protein expression. To examine antibody-mediated viral reservoir targeting without a need for viral induction, we used an anti-CD4 mAb to deplete both infected and uninfected CD4+ T cells. Ten rhesus macaques infected with barcoded SIVmac239M received cART for 93 weeks starting 4 days after infection. During cART, 5 animals received 5 to 6 anti-CD4 antibody administrations and CD4+ T cell populations were then allowed 1 year on cART to recover. Despite profound CD4+ T cell depletion in blood and lymph nodes, time to viral rebound following cART cessation was not significantly delayed in anti-CD4-treated animals compared with controls. Viral reactivation rates, determined based on rebounding SIVmac239M clonotype proportions, also were not significantly different in CD4-depleted animals. Notably, antibody-mediated depletion was limited in rectal tissue and negligible in lymphoid follicles. These results suggest that, even if robust viral reactivation can be achieved, antibody-mediated viral reservoir depletion may be limited in key tissue sites.


Assuntos
Antirretrovirais/administração & dosagem , Anticorpos Antivirais/administração & dosagem , Síndrome de Imunodeficiência Adquirida dos Símios/tratamento farmacológico , Vírus da Imunodeficiência Símia/imunologia , Animais , Fármacos Anti-HIV/administração & dosagem , Anticorpos Monoclonais/administração & dosagem , Antígenos CD4/antagonistas & inibidores , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/virologia , Feminino , Infecções por HIV/tratamento farmacológico , Infecções por HIV/imunologia , Infecções por HIV/virologia , HIV-1/efeitos dos fármacos , HIV-1/fisiologia , Humanos , Depleção Linfocítica , Tecido Linfoide/imunologia , Tecido Linfoide/virologia , Macaca mulatta , Masculino , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/efeitos dos fármacos , Vírus da Imunodeficiência Símia/fisiologia , Carga Viral/efeitos dos fármacos , Carga Viral/imunologia , Ativação Viral/efeitos dos fármacos , Ativação Viral/imunologia , Replicação Viral/efeitos dos fármacos , Replicação Viral/imunologia
4.
JCI Insight ; 4(11)2019 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-31167974

RESUMO

Reduction/elimination of HIV-1 reservoirs that persist despite combination antiretroviral therapy (cART) will likely require induction of viral expression by residual infected cells and enhanced clearance of these cells. TLR7 agonists have potential to mediate these activities. We evaluated immunologic and virologic effects of repeated doses of the TLR7 agonist GS-9620 in SIV-infected rhesus macaques receiving cART, which was initiated at 13 days after infection and was continued for 75 weeks prior to GS-9620 administration. During cART, GS-9620 induced transient upregulation of IFN-stimulated genes in blood and tissues, increases in plasma cytokines, and changes in immune cell population activation and phenotypes but did not result in measurable increases in plasma viremia or viral RNA-to-viral DNA ratio in PBMCs or tissues nor decreases in viral DNA in PBMC or tissues. SIV-specific CD8+ T cell responses, negligible prior to GS-9620 treatment, were not measurably boosted by treatment; a second course of GS-9620 administration overlapping with later cART discontinuation was associated with increased CD8+ T cell responses during viral recrudescence. These results confirm and extend evidence for GS-9620-mediated enhancement of antiviral immune responses in SIV-infected macaques but suggest that GS-9620-mediated viral induction may depend critically on the timing of initiation and duration of cART and resulting characteristics of viral reservoirs.


Assuntos
Antirretrovirais , Pteridinas , Síndrome de Imunodeficiência Adquirida dos Símios , Receptor 7 Toll-Like/agonistas , Viremia , Animais , Antirretrovirais/administração & dosagem , Antirretrovirais/farmacologia , Antirretrovirais/uso terapêutico , Linfócitos T CD8-Positivos/imunologia , Citocinas/metabolismo , Quimioterapia Combinada , Macaca mulatta , Masculino , Pteridinas/administração & dosagem , Pteridinas/farmacologia , Pteridinas/uso terapêutico , RNA Viral/genética , RNA Viral/metabolismo , Síndrome de Imunodeficiência Adquirida dos Símios/tratamento farmacológico , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Regulação para Cima/efeitos dos fármacos , Carga Viral/efeitos dos fármacos , Viremia/tratamento farmacológico , Viremia/imunologia , Viremia/virologia
5.
Nat Med ; 24(9): 1430-1440, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30082858

RESUMO

Prophylactic vaccination of rhesus macaques with rhesus cytomegalovirus (RhCMV) vectors expressing simian immunodeficiency virus (SIV) antigens (RhCMV/SIV) elicits immune responses that stringently control highly pathogenic SIV infection, with subsequent apparent clearance of the infection, in ~50% of vaccinees. In contrast, here, we show that therapeutic RhCMV/SIV vaccination of rhesus macaques previously infected with SIV and given continuous combination antiretroviral therapy (cART) beginning 4-9 d post-SIV infection does not mediate measurable SIV reservoir clearance during over 600 d of follow-up on cART relative to RhCMV/control vaccination. However, none of the six animals started on cART on day four or five, across both RhCMV/SIV- and RhCMV/control-vaccinated groups, those rhesus macaques with SIV reservoirs most closely resembling those of prophylactically RhCMV/SIV-vaccinated and protected animals early in their course, showed post-cART viral rebound with up to nine months of follow-up. Moreover, at necropsy, these rhesus macaques showed little to no evidence of replication-competent SIV. These results suggest that the early SIV reservoir is limited in durability and that effective blockade of viral replication and spread in this critical time window by either pharmacologic or immunologic suppression may result in reduction, and potentially loss, of rebound-competent virus over a period of ~two years.


Assuntos
Antirretrovirais/uso terapêutico , Síndrome de Imunodeficiência Adquirida dos Símios/tratamento farmacológico , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/fisiologia , Transferência Adotiva , Animais , Antirretrovirais/farmacologia , Quimioterapia Combinada , Cinética , Macaca mulatta , Necrose , Vírus da Imunodeficiência Símia/efeitos dos fármacos , Vacinação , Vacinas Virais/imunologia , Viremia/tratamento farmacológico , Replicação Viral
6.
Immunity ; 45(3): 656-668, 2016 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-27653601

RESUMO

Infection with HIV persists despite suppressive antiretroviral therapy (ART), and treatment interruption results in rapid viral rebound. Antibody-mediated CD8(+) lymphocyte depletion in simian immunodeficiency virus (SIV)-infected rhesus macaques (RMs) shows that these cells contribute to viral control in untreated animals. However, the contribution of CD8(+) lymphocytes to maintaining viral suppression under ART remains unknown. Here, we have shown that in SIV-infected RMs treated with short-term (i.e., 8-32 week) ART, depletion of CD8(+) lymphocytes resulted in increased plasma viremia in all animals and that repopulation of CD8(+) T cells was associated with prompt reestablishment of virus control. Although the number of SIV-DNA-positive cells remained unchanged after CD8 depletion and reconstitution, the frequency of SIV-infected CD4(+) T cells before depletion positively correlated with both the peak and area under the curve of viremia after depletion. These results suggest a role for CD8(+) T cells in controlling viral production during ART, thus providing a rationale for exploring immunotherapeutic approaches in ART-treated HIV-infected individuals.


Assuntos
Antirretrovirais/farmacologia , Linfócitos T CD8-Positivos/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/tratamento farmacológico , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vírus da Imunodeficiência Símia/imunologia , Animais , Anticorpos Antivirais/imunologia , Terapia Antirretroviral de Alta Atividade/métodos , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Feminino , Depleção Linfocítica/métodos , Macaca mulatta , Masculino , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/efeitos dos fármacos , Carga Viral/efeitos dos fármacos , Carga Viral/imunologia , Viremia/tratamento farmacológico , Viremia/imunologia , Viremia/virologia , Replicação Viral/efeitos dos fármacos , Replicação Viral/imunologia
7.
Antimicrob Agents Chemother ; 60(3): 1560-72, 2015 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-26711758

RESUMO

Replication-competent human immunodeficiency virus (HIV) persists in infected people despite suppressive combination antiretroviral therapy (cART), and it represents a major obstacle to HIV functional cure or eradication. We have developed a model of cART-mediated viral suppression in simian human immunodeficiency virus (SIV) mac239-infected Indian rhesus macaques and evaluated the impact of the histone deacetylase inhibitor (HDACi) romidepsin (RMD) on viremia in vivo. Eight macaques virologically suppressed to clinically relevant levels (<30 viral RNA copies/ml of plasma), using a three-class five-drug cART regimen, received multiple intravenous infusions of either RMD (n = 5) or saline (n = 3) starting 31 to 54 weeks after cART initiation. In vivo RMD treatment resulted in significant transient increases in acetylated histone levels in CD4(+) T cells. RMD-treated animals demonstrated plasma viral load measurements for each 2-week treatment cycle that were significantly higher than those in saline control-treated animals during periods of treatment, suggestive of RMD-induced viral reactivation. However, plasma virus rebound was indistinguishable between RMD-treated and control-treated animals for a subset of animals released from cART. These findings suggest that HDACi drugs, such as RMD, can reactivate residual virus in the presence of suppressive antiviral therapy and may be a valuable component of a comprehensive HIV functional cure/eradication strategy.


Assuntos
Depsipeptídeos/uso terapêutico , Inibidores de Histona Desacetilases/uso terapêutico , Macaca mulatta/virologia , RNA Viral/sangue , Síndrome de Imunodeficiência Adquirida dos Símios/tratamento farmacológico , Vírus da Imunodeficiência Símia/efeitos dos fármacos , Carga Viral/efeitos dos fármacos , Acetilação , Animais , Terapia Antirretroviral de Alta Atividade , Linfócitos T CD4-Positivos/metabolismo , Depsipeptídeos/farmacocinética , Inibidores de Histona Desacetilases/farmacocinética , Histonas/metabolismo , Viremia/tratamento farmacológico , Ativação Viral/efeitos dos fármacos
8.
Cell Host Microbe ; 16(3): 412-8, 2014 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-25211081

RESUMO

Infection of macaques with chimeric viruses based on SIVMAC but expressing the HIV-1 envelope (Env) glycoproteins (SHIVs) remains the most powerful model for evaluating prevention and therapeutic strategies against AIDS. Unfortunately, only a few SHIVs are currently available. Furthermore, their generation has required extensive adaptation of the HIV-1 Env sequences in macaques so they may not accurately represent HIV-1 Env proteins circulating in humans, potentially limiting their translational utility. We developed a strategy for generating large numbers of SHIV constructs expressing Env proteins from newly transmitted HIV-1 strains. By inoculating macaques with cocktails of multiple SHIV variants, we selected SHIVs that can replicate and cause AIDS-like disease in immunologically intact rhesus macaques without requiring animal-to-animal passage. One of these SHIVs could be transmitted mucosally. We demonstrate the utility of the SHIVs generated by this method for evaluating neutralizing antibody administration as a protection against mucosal SHIV challenge.


Assuntos
Infecções por HIV/virologia , HIV-1/genética , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/genética , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética , Animais , Anticorpos Neutralizantes/imunologia , Modelos Animais de Doenças , Expressão Gênica , Anticorpos Anti-HIV/imunologia , Infecções por HIV/imunologia , Infecções por HIV/transmissão , HIV-1/metabolismo , Humanos , Macaca , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/transmissão , Vírus da Imunodeficiência Símia/metabolismo , Vírus da Imunodeficiência Símia/patogenicidade , Cultura de Vírus , Produtos do Gene env do Vírus da Imunodeficiência Humana/metabolismo
9.
Antimicrob Agents Chemother ; 58(11): 6790-806, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25182644

RESUMO

Nonhuman primate models are needed for evaluations of proposed strategies targeting residual virus that persists in HIV-1-infected individuals receiving suppressive combination antiretroviral therapy (cART). However, relevant nonhuman primate (NHP) models of cART-mediated suppression have proven challenging to develop. We used a novel three-class, six-drug cART regimen to achieve durable 4.0- to 5.5-log reductions in plasma viremia levels and declines in cell-associated viral RNA and DNA in blood and tissues of simian immunodeficiency virus SIVmac239-infected Indian-origin rhesus macaques, then evaluated the impact of treatment with the histone deacetylase inhibitor (HDACi) suberoylanilide hydroxamic acid (SAHA; Vorinostat) on the residual virus pool. Ex vivo SAHA treatment of CD4(+) T cells obtained from cART-suppressed animals increased histone acetylation and viral RNA levels in culture supernatants. cART-suppressed animals each received 84 total doses of oral SAHA. We observed SAHA dose-dependent increases in acetylated histones with evidence for sustained modulation as well as refractoriness following prolonged administration. In vivo virologic activity was demonstrated based on the ratio of viral RNA to viral DNA in peripheral blood mononuclear cells, a presumptive measure of viral transcription, which significantly increased in SAHA-treated animals. However, residual virus was readily detected at the end of treatment, suggesting that SAHA alone may be insufficient for viral eradication in the setting of suppressive cART. The effects observed were similar to emerging data for repeat-dose SAHA treatment of HIV-infected individuals on cART, demonstrating the feasibility, utility, and relevance of NHP models of cART-mediated suppression for in vivo assessments of AIDS virus functional cure/eradication approaches.


Assuntos
Antirretrovirais/uso terapêutico , Inibidores de Histona Desacetilases/uso terapêutico , Ácidos Hidroxâmicos/uso terapêutico , Síndrome de Imunodeficiência Adquirida dos Símios/tratamento farmacológico , Vírus da Imunodeficiência Símia/efeitos dos fármacos , Acetilação/efeitos dos fármacos , Animais , Linfócitos T CD4-Positivos/efeitos dos fármacos , Modelos Animais de Doenças , Quimioterapia Combinada , Histonas/metabolismo , Macaca mulatta , RNA Viral/sangue , RNA Viral/genética , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Carga Viral/efeitos dos fármacos , Vorinostat
10.
J Immunol Res ; 2014: 341820, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24995344

RESUMO

The current candidate vaccine against Yersinia pestis infection consists of two subunit proteins: the capsule protein or F1 protein and the low calcium response V protein or V-antigen. Little is known of the recognition of the vaccine by the host's innate immune system and how it affects the acquired immune response to the vaccine. Thus, we vaccinated Toll-like receptor (Tlr) 2, 4, and 2/4-double deficient, as well as signal adaptor protein Myd88-deficient mice. We found that Tlr4 and Myd88 appeared to be required for an optimal immune response to the F1-V vaccine but not Tlr2 when compared to wild-type mice. However, there was a difference between the requirement for Tlr4 and MyD88 in vaccinated animals. When F1-V vaccinated Tlr4 mutant (lipopolysaccharide tolerant) and Myd88-deficient mice were challenged by aerosol with Y. pestis CO92, all but one Tlr4 mutant mice survived the challenge, but no vaccinated Myd88-deficient mice survived the challenge. Spleens from these latter nonsurviving mice showed that Y. pestis was not cleared from the infected mice. Our results suggest that MyD88 appears to be important for both an optimal immune response to F1-V and in protection against a lethal challenge of Y. pestis CO92 in F1-V vaccinated mice.


Assuntos
Fator 88 de Diferenciação Mieloide/metabolismo , Vacina contra a Peste/imunologia , Peste/imunologia , Peste/metabolismo , Yersinia pestis/imunologia , Animais , Anticorpos Antibacterianos/imunologia , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/deficiência , Fator 88 de Diferenciação Mieloide/genética , Peste/genética , Peste/mortalidade , Peste/prevenção & controle , Baço/citologia , Baço/imunologia , Baço/metabolismo , Baço/patologia , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo
11.
Antimicrob Agents Chemother ; 58(6): 3276-84, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24687492

RESUMO

It has been previously shown that mice subjected to an aerosol exposure to Yersinia pestis and treated with ß-lactam antibiotics after a delay of 42 h died at an accelerated rate compared to controls. It was hypothesized that endotoxin release in antibiotic-treated mice accounted for the accelerated death rate in the mice exposed to aerosol Y. pestis. Imipenem, a ß-lactam antibiotic, binds to penicillin binding protein 2 with the highest affinity and produces rounded cells. The binding of imipenem causes cells to lyse quickly and thereby to release less free endotoxin. Two imipenem regimens producing fractions of time that the concentration of free, unbound drug was above the MIC (fT>MIC) of approximately 25% (6/24 h) and 40% (9.5/24 h) were evaluated. In the postexposure prophylaxis study, the 40% and 25% regimens produced 90% and 40% survivorship, respectively. In the 42-h treatment study, both regimens demonstrated a 40 to 50% survivorship at therapy cessation and some deaths thereafter, resulting in a 30% survivorship. As this was an improvement over the results with other ß-lactams, a comparison of both endotoxin and cytokine levels in mice treated with imipenem and ceftazidime (a ß-lactam previously demonstrated to accelerate death in mice during treatment) was performed and supported the original hypotheses; however, the levels observed in animals treated with ciprofloxacin (included as an unrelated antibiotic that is also bactericidal but should cause little lysis due to a different mode of action) were elevated and significantly (7-fold) higher than those with ceftazidime.


Assuntos
Antibacterianos/uso terapêutico , Imipenem/uso terapêutico , Peste/prevenção & controle , Yersinia pestis/efeitos dos fármacos , Aerossóis , Animais , Antibacterianos/farmacocinética , Antibacterianos/farmacologia , Ceftazidima/farmacocinética , Ceftazidima/farmacologia , Ceftazidima/uso terapêutico , Ciprofloxacina/farmacocinética , Ciprofloxacina/farmacologia , Ciprofloxacina/uso terapêutico , Citocinas/metabolismo , Endotoxinas/análise , Feminino , Imipenem/farmacocinética , Imipenem/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Peste/metabolismo , Peste/microbiologia , Análise de Sobrevida
12.
PLoS One ; 5(10): e13047, 2010 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-20976274

RESUMO

Yersinia pestis is the etiologic agent of plague that has killed more than 200 million people throughout the recorded history of mankind. Antibiotics may provide little immediate relief to patients who have a high bacteremia or to patients infected with an antibiotic resistant strain of plague. Two virulent factors of Y. pestis are the capsid F1 protein and the low-calcium response (Lcr) V-protein or V-antigen that have been proven to be the targets for both active and passive immunization. There are mouse monoclonal antibodies (mAbs) against the F1- and V-antigens that can passively protect mice in a murine model of plague; however, there are no anti-Yersinia pestis monoclonal antibodies available for prophylactic or therapeutic treatment in humans. We identified one anti-F1-specific human mAb (m252) and two anti-V-specific human mAb (m253, m254) by panning a naïve phage-displayed Fab library against the F1- and V-antigens. The Fabs were converted to IgG1s and their binding and protective activities were evaluated. M252 bound weakly to peptides located at the F1 N-terminus where a protective mouse anti-F1 mAb also binds. M253 bound strongly to a V-antigen peptide indicating a linear epitope; m254 did not bind to any peptide from a panel of 53 peptides suggesting that its epitope may be conformational. M252 showed better protection than m253 and m254 against a Y, pestis challenge in a plague mouse model. A synergistic effect was observed when the three antibodies were combined. Incomplete to complete protection was achieved when m252 was given at different times post-challenge. These antibodies can be further studied to determine their potential as therapeutics or prophylactics in Y. pestis infection in humans.


Assuntos
Anticorpos Monoclonais/imunologia , Modelos Animais de Doenças , Peste/prevenção & controle , Yersinia pestis/imunologia , Animais , Ensaio de Imunoadsorção Enzimática , Mapeamento de Epitopos , Camundongos , Peste/imunologia
13.
Vaccine ; 27(16): 2220-9, 2009 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-19428836

RESUMO

The current U.S. Department of Defense candidate plague vaccine is a fusion between two Yersinia pestis proteins: the F1 capsular protein, and the low calcium response (Lcr) V-protein. We hypothesized that an immunomodulator, such as CpG oligodeoxynucleotide (ODN)s, could augment the immune response to the plague F1-V vaccine in a mouse model for plague. CpG ODNs significantly augmented the antibody response and efficacy of a single dose of the plague vaccine in murine bubonic and pneumonic models of plague. In the latter study, we also found an overall significant augmentation the immune response to the individual subunits of the plague vaccine by CpG ODN 2006. In a long-term, prime-boost study, CpG ODN induced a significant early augmentation of the IgG response to the vaccine. The presence of CpG ODN induced a significant increase in the IgG2a subclass response to the vaccine up to 5 months after the boost. Our studies showed that CpG ODNs significantly augmented the IgG antibody response to the plague vaccine, which increased the probability of survival in murine models of plague (P<0.0001).


Assuntos
Adjuvantes Imunológicos , Antígenos de Bactérias/imunologia , Proteínas de Bactérias/imunologia , Oligodesoxirribonucleotídeos/imunologia , Vacina contra a Peste/imunologia , Peste/prevenção & controle , Proteínas Citotóxicas Formadoras de Poros/imunologia , Animais , Anticorpos Antibacterianos , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Peste/imunologia , Receptor 2 Toll-Like/fisiologia , Vacinação , Vacinas Sintéticas/imunologia , Yersinia pestis/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...